Arizona Hantavirus Update

Rodent-borne Viruses of Arizona

- Hantaviruses:
 - Sin Nombre
 - Limestone Canyon
 - El Moro Canyon
- Arenaviruses:
 - Lymphocytic Choriomeningitis Virus
 - Whitewater Arroyo Virus

Characteristics of Hantaviruses

- Rodent hosts
 Genus and possibly species specific
- Transmission:
 - -Biting, communal behavior
 - -Aerosolization of virus from rodent excreta
 - -Some human-to-human (Andes Virus only)
- Primarily Old World Disease until 1993 Four-Corners outbreak

Rodent Associations with Hantavirus

- Solely rodent reservoirs (except for one insectivore)
- Typically 1 virus → to one host
- Chronic asymptomatic infections
- Long-term shedding of virus
- Present in 3 subfamilies of murid rodents

Virus is Rodent-specific

Update

Hantavirus Pulmonary Syndrome Cases by State of Residence United States – February 1, 2006

Five cases were reported with either unknown state of residence or were not residents of the United States.

Location of HPS Cases by Virus Type as of February 1, 2006 Total Cases (N = 416 in 30 States)

Hantavirus Pulmonary Syndrome, United States Descriptive Demographic Statistics, February 1, 2006

Characteristics		Total	AZ
	N	416 (100%)	47 (11%)
Gender			
	Male	260 (63%)	25 (53%)
	Female	156 (37%)	22 (47%)
Race			
	White	320 (77%)	19 (40%) 26 (55%)
	American Indian	79 (19%)	26 (55%)
	Black	6 (2%)	
	Asian	3 (1%)	
Ethnicity			
	Hispanic	55 (13%)	2 (4%)
Case Fatality			
	Dead	146 (35%)	15 (32%)
Age (years)	Mean =	38 [10 – 83] N	Mean = 39 [11 – 7

Arizona HPS Cases, 1992-2006

Why?

The Hantavirus Infection Cycle

Health Services

Environmental and Climatic Factors Associated with Cases

- Strong seasonality
- Different biomes have different seasonality
- Infection rates fluctuate with climate and population size
- Outbreaks tied to heavy rainfall and subsequent drought

Idealized Profile of Biomes Sampled Southwestern United States

DECREASE IN SEROPREVALENCE OF ANTIBODIES TO HANTAVIRUS IN RODENTS FROM 1993– 1994 HANTAVIRUS PULMONARY SYNDROME CASE SITES

Engelthaler, Levy, Fink, et al, 1998, Am J Trop Med Hyg

1993-1997 Arizona Hantavirus Retrap Study Sites

 Study identified "...a significant decrease in *Peromyscus* hantavirus antibody seroprevalence from the 1993–1994 outbreak trapping period to the 1996–1997 retrapping period

$$(X^2 = 43.59, P < 0.0001)$$
"

Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States

Engelthaler, Mosely, et al, 1999, Emerg Infect Dis

The Influence of Climate

HPS cases in Four Corners States and Precipitation, 1992-1995

From Engelthaler, Mosley et al, 1999, EID

2005-2006 Precipitation Change from 30-yr mean

Phoenix

2005-2006 Rainfall vs. 30 Year Mean

Delayed Density Dependence

```
↑Rainfall → ↑Vegetation → ↑Rodents → → ↑Infected Rodents → → % infected
followed by
```

Rainfall → Rodents → ↑ % Infected
 → ↑ Risk to Humans

Delayed Density Dependence

Mills et al, 1999, EID

Prevention and Control

Prevention and Control

- No Vaccine
- No Treatment
- Behavioral Control
 - Reduce exposure to rodents, nests and droppings
 - Clear brush and clutter away from home
 - Close entryways into home
 - Trap out existing rodents
 - Use 10% Bleach or Lysol to wet down and disinfect

Clear brush and clutter away from home

Wet Disinfection

Arizona

Department of
Health Services

Rodent Proofing

Arizona
Department of
Health Services

Before Control Measures

After Control Measures

Summary

- Sin Nombre virus is found throughout Arizona in deer mouse populations
- Biome and geography dictate seasonal risk of disease
- Climate and environment highly influence overall risk between years
- Prevention of disease can only occur through risk reduction behaviors

